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Summary

1. Quantifying the role of biotic interactions in driving community assembly often relies on analys-
ing species co-occurrence patterns, where segregated patterns are taken to indicate antagonistic inter-
actions such as competition. It is unknown, however, if co-occurrence patterns are stationary across
environmental gradients, as it is possible that the strength of biotic interactions that drive these pat-
terns also depends on the environment. In this study, we aim to understand how patterns of co-
occurrence change when species move from their environmental range centre towards their range
periphery while isolating the potential signal of biotic interactions from confounding factors.
2. We used two separate statistical approaches (null models and joint species distribution models) to
quantify pairwise co-occurrence patterns for tree species sampled in 9382 plots distributed across the
conterminous US. We also analysed co-occurrence patterns that emerged from a simple meta-commu-
nity model. We then assessed how patterns of species segregation and aggregation change in relation
to habitat suitability while accounting for multiple factors known to confound co-occurrence analyses.
3. We found strong non-stationarity in co-occurrences, with patterns shifting from segregated at the
environmental range centre towards aggregated at range margins for the majority of tree species.
Patterns were in full agreement between model simulations and both empirical analyses. Model sim-
ulations suggest that this pattern is at least partly driven by variation in the relative abundances of
non-focal species even when no direct biological interactions are present.
4. Synthesis. Patterns of tree species co-occurrence vary across environmental gradients, with
increased segregation when environmental conditions are optimal and increased aggregation when
the environment is less suitable. This pattern may originate from a trade-off between the abundance
of the focal species pair, which decreases towards the environmental range margin, and the increas-
ing abundance of non-focal species to which the environment is more suitable. The strong depen-
dence of co-occurrence patterns on environmental conditions might limit the predictive ability of
joint species distribution models, which couple species co-occurrences and their environmental
responses, because co-occurrence patterns and environmental responses are confounded.
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Introduction

The importance of biotic interactions for understanding broad-
scale distributional patterns is a major ecological question
(Gotelli, Graves & Rahbek 2010; McGill 2010; Pigot &
Tobias 2013; Afkhami, McIntyre & Strauss 2014; Ara�ujo &
Rozenfeld 2014; Belmaker et al. 2015). Apart from the theo-
retical interest in this question, understanding the role of bio-
tic interactions has applied implications, as predicting the
response of species to change (climate, land use) is increas-
ingly reliant on species distribution models (SDM). These

models account for environmental variability but typically
ignore biotic interactions. If biotic interactions are indeed
important, SDM may be missing an essential component (Gil-
man et al. 2010; Kissling et al. 2012; Zarnetske, Skelly &
Urban 2012; Wisz et al. 2013; Godsoe et al. 2015).
Even when biotic interactions can be quantified accurately,

their strength and even directionality may vary in space and
time (Thompson 1988; Chamberlain, Bronstein & Rudgers
2014). Such non-stationarity in biotic interactions may sub-
stantially hamper the ability to use information on biotic inter-
actions to improve predictions of distributional changes.
Thus, identifying general patterns in the variation of the
strength of biotic interactions is important for understanding
to what extent, and where geographically, SDM may fail.*Correspondence author. E-mail: barmassada@gmail.com
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If the competitive ability of a species depends to some
degree on the suitability of the environment it occupies (Bar-
rio et al. 2013; Milazzo et al. 2013), we may expect high
spatial segregation between competing species at the centre of
their environmental (not necessarily geographical) range, and
variable or aggregated patterns at their environmental range
periphery. Alternatively, species may actually compete more
severely when in unfavourable environments, where condi-
tions are extreme and resources are limited. This is because
species may be more sensitive to competition, and hence sus-
ceptible to local exclusion, if they are close to their environ-
mental tolerance threshold. As an example, alpine plants were
shown to be more severely impacted by competition from
invasives under increased temperatures, which represent con-
ditions closer to their environmental limits (Alexander, Diez
& Levine 2015). Under these conditions, spatial segregation
between competing species will be most common at their
environmental range periphery.
Studies aimed at identifying variation in biotic interactions

across space have typically inferred biotic interactions from
spatial patterns of co-occurrence, usually using observational
studies over many species. While experimental studies found
evidence for directional variation in the strength of biotic
interactions along environmental gradients (e.g., Callaway
et al. 2002), patterns using co-occurrences are more equivocal
(Dullinger et al. 2007; Maestre et al. 2009; L�opez et al.
2013). Thus, we still do not have a general understanding of
the extent to which co-occurrences patterns vary across envi-
ronmental gradients.
Analyses of species co-occurrence are commonly based on

null models that attempt to identify when species occurrences
are aggregated, segregated or random (Gotelli 2000; Lyons
et al. 2016). However, these analyses are confounded by sev-
eral factors that can lead to non-random co-occurrence pat-
terns even in the absence of interspecific interactions. These
factors include similarities between species’ environmental
preferences (Bar-Massada 2015b; Royan et al. 2015), envi-
ronmental heterogeneity (Heino & Gr€onroos 2013; Bar-
Massada 2015b) and differences in geographic ranges
(Connor, Collins & Simberloff 2013; Pollock et al. 2014).
For example, increasing levels of niche overlap between tree
species leads to more aggregated co-occurrence patterns,
while increased environmental heterogeneity leads to more
segregated patterns (Bar-Massada 2015b). Co-occurrence
analyses should account for these confounding factors if one
attempts to gain insight about relationships between co-occur-
rence patterns and biotic interactions. Relatively new statisti-
cal methods that address some of these issues are based on
joint species distribution models (JSDM), which analyse spe-
cies co-occurrences while accounting for their similarities in
their environmental responses (Ovaskainen, Hottola & Siito-
nen 2010; Kissling et al. 2012; Pollock et al. 2014; Warton
et al. 2015). However, even with these methods, it remains
unclear if co-occurrences patterns remain stationary across
environmental gradients.
In this study, we first analysed a large data base of North

American trees to understand how the direction and strength

of segregation and aggregation between species changes as
species move from their environmental range centre towards
their range periphery. By using field data composed of fine-
grained local samples, we prevented the dilution of the poten-
tial signal of biotic interactions by spatial scale (i.e., the size
of our forest samples was small enough to capture species
interactions). In addition, we specifically accounted for the
effects of potentially confounding variables on co-occurrence
analyses (such as environmental heterogeneity and niche over-
lap between species) in an attempt to further distil the signal
of biotic interactions. We then corroborated our empirical
findings using a meta-community model. This allowed us to
gain a deeper understanding of the mechanisms underlying
both the empirical and modelled patterns. Together, the
empirical and modelled analyses provide a general under-
standing of the expected patterns of change in pairwise
co-occurrences across environmental gradients.

Materials and methods

OVERVIEW

We quantified pairwise species co-occurrence for tree species in the
conterminous US, and then analysed the effects of habitat suitability
(as a measure of location along an environmental gradient) on
co-occurrence patterns, while accounting for multiple potential con-
founding variables (see Fig. 1 for a flow chart that depicts the main
component of our analysis). Our current analysis builds upon a previ-
ous analysis of the same data (Bar-Massada 2015b) which focused
solely on the effects of species’ niches and environmental heterogene-
ity on co-occurrence patterns. To quantify co-occurrence patterns, we
used the standard null model approach (Gotelli 2000; Lyons et al.
2016), which has been the most commonly utilized in recent decades.
As an additional test of the relationship between co-occurrence and
environmental conditions, which explicitly accounts for species-speci-
fic environmental preferences, we also analysed our data using JSDM
(Pollock et al. 2014); however, due to lack of space, we describe that
part of our study in the supplementary materials. In addition to the
empirical analysis, we analysed the results of a simple meta-commu-
nity model (Bar-Massada 2015a) to assess whether our empirical
results reflect a more general relationship between habitat suitability
and species co-occurrence patterns.

TREE DATA

We used data on forest communities obtained from the U.S. Forest
Inventory and Analysis Program (FIA). Data were collected in 9382
sample plots, located in the conterminous US (plots were randomly
selected from the much larger full FIA data set). Each FIA sample
plot consists of four circular subplots of 7�32 m radius, in which the
identity of each tree species with a diameter at breast height larger
than 12�7 cm is recorded. Due to privacy issues, raw FIA data are
supplied without plot locations and species identities. However, the
GIS Spatial Data Services unit of the U.S. Forest Service supplied a
distance matrix containing the geographic distances between each pair
of plots, information on species presence in plots (denoted by unique
IDs) and data on 12 environmental variables in each plot which were
derived from ancillary data sets. These variables were: (i) Climate
variables: mean annual temperatures and precipitation, and seasonal-
ity of temperature and precipitation (bio1, bio4, bio12 and bio15
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variables, obtained from the BioClim data base); (ii) Topography
variables: elevation and elevation range within a 1-km cell size (ob-
tained and subsequently processed from the U.S. National Atlas); (iii)
Coarse-scale soil data: minimum/maximum values of water holding
capacity, organic matter content, and soil permeability (obtained from
the STATSGO data base, generated by the Soil Conservation Service,
U.S. Department of Agriculture; available at http://water.usgs.gov/
GIS/metadata/usgswrd/XML/ussoils.xml).

SPECIES CO-OCCURRENCE PATTERNS

We split the entire tree data set into 200 regions by running a cluster
analysis on the site distance matrix using the Ward algorithm. We
generated 200 regions to prevent community matrices from becoming
too large, as this is known to lead to statistical problems in null
model analyses (Fayle & Manica 2010; Gotelli & Ulrich 2012). The
mean number of sites in each region was 46�3 (SD 18�6). To prevent
biasing our analysis by species with very low levels of occurrence,
we omitted all species with less than five occurrences in a given
region. We then quantified pairwise species co-occurrence by calculat-
ing the normalized checkerboard score (C-score; Stone & Roberts
1990) for each species pair within each region.

To evaluate how these empirical C-scores deviated from those
emerging by chance, we conducted null model analyses, in which we
re-shuffled species occurrences across plots using a pre-defined ran-
domization algorithm. We generated a null distribution of pairwise

species co-occurrences in each region, by running 1000 fixed-fixed
null models using the trial-swap algorithm (Mikl�os & Podani 2004),
with a thinning parameter of 10 000. Fixed-fixed null models shuffle
species presences among sites in a constrained manner, which retains
both species occupancies and species richness in sites, and therefore
account for differences in habitat suitability across sites. After each
null model run, we calculated the C-score for each species pair. Thus,
at the end of the null model analysis, we had an entire distribution of
null C-scores for each and every species pair in each region. To facil-
itate comparisons of co-occurrence patterns across species pairs and
regions, we calculated the standardized effect size (SES) of the C-
score by calculating the difference between the empirical C-score and
the mean of its null distribution, and dividing the result by the stan-
dard deviation of the null distribution. Positive SES values denote
segregated co-occurrence patterns, negative SES values denote aggre-
gated co-occurrence patterns and SES values close to zero denote ran-
dom co-occurrence patterns. We conducted all co-occurrence analyses
in R (R Core Team 2013) using packages ‘vegan’ (Oksanen et al.
2013) and ‘bipartite’(Dormann, Gruber & Fruend 2008).

ANALYS IS OF JOINT HABITAT SUITABIL ITY

To quantify habitat suitability for each species at each site, we gener-
ated a SDM based on species occurrences and the 12 environmental
variables that are known to reflect the environmental requirements of
tree species. For each species, we generated an SDM at the
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Fig. 1. A flow chart of the various stages of the empirical analysis. The shaded area of the figure marks analyses that were conducted at the
regional scale; all other analyses were conducted at the continental scale. Blocks outlined by dashes highlight variables used in the statistical anal-
ysis. Due to insufficient space, the figure does not include the continental-scale process of estimating range similarity among species (Geomean).
Numbers inside tables are arbitrary.

© 2016 The Authors. Journal of Ecology © 2016 British Ecological Society, Journal of Ecology

Co-occurrence along environmental gradients 3

http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml


continental scale, using all data points in our subset of the FIA data.
For the SDM, we used Maximum Entropy (MaxEnt; Phillips, Ander-
son & Schapire 2006). As an output, MaxEnt generates a measure of
relative habitat suitability ranging from 0 (unsuitable habitat) to 1
(highly suitable habitat) in any given site. To improve model perfor-
mance and predictive capabilities, we restricted the analysis of habitat
suitability to those species that appeared in 30 sites or more in the
entire data set, which led to the generation of models for 155 tree
species overall (of 305 species that are present in the data set). SDMs
for all 155 species presented high cross-validated performance
(AUC > 0�8). We then calculated, for each species in each region,
the mean value of habitat suitability across sites as a measure of over-
all environmental suitability of a given region to a given species. We
subsequently calculated the mean of this value for each pair of spe-
cies within each region to yield a pairwise measure of habitat suitabil-
ity at the regional scale (hereafter Habmean). A low Habmean

corresponds with a pair of species that are found in a region that is
further from the optimum of their environmental niche. Thus, a pair
of species with similar environmental requirements will exhibit a gra-
dient of increasing Habmean values from regions that are further from
the optimum of their environmental niches to regions closer to their
niche optimum.

QUANTIFY ING FACTORS CONFOUNDING SPECIES CO-

OCCURRENCE ANALYSES

Previous studies have shown that non-random species co-occurrence
patterns might emerge simply due to the degree of similarity in spe-
cies’ niches, the amount of cohesion in their geographic distributions,
and the environmental heterogeneity of the regions they inhabit (Con-
nor, Collins & Simberloff 2013; Bar-Massada 2015b; Royan et al.
2015). We therefore quantified several potential confounding factors
to test if they influenced our analysis.

We used the results of the SDM analysis to calculate the amount
of similarity in habitat requirements for each species pair (that is, the
level of agreement between their vectors of site suitability across all
sites at the continental scale), as a proximate measure of realized
niche overlap in terms of broad scale climatic, topographic and
edaphic variables (the realized Grinellian niche; Sober�on 2007). We
followed Bar-Massada (2015b), who calculated continental-scale
niche overlap, D, using the Bray–Curtis similarity metric.

To quantify environmental heterogeneity at the regional scale, we
ran principal components analysis (PCA) on the same 12 environmen-
tal variables we used for modelling species distributions, after stan-
dardizing the variables to zero mean and unit variance. The first four
principal components explained 79�61% of the variation in the envi-
ronmental data (29�69%, 20�62%, 16�04% and 13�25% by the first
four axes respectively). For each species pair, at any given geographic
region, we calculated the volume of the convex hull encompassing
the values of the first four principal components across all sites in
which either or both species occurred. This serves as a species pair-
specific measure of environmental heterogeneity at the regional scale,
as it excludes sites in which neither species appeared. We calculated
the convex hull using the R package ‘geometry’ (Habel et al. 2015).

In spatial analyses that relate species distributions to the environ-
ment, it is important to separate the true effect of the environment
from patterns which may arise due to the cohesion of species ranges
(e.g. Bahn & McGill 2007; Beale, Lennon & Gimona 2008). We thus
performed spatial interpolation to estimate for each species an occur-
rence probability based on geographic proximity to other occupied
sites but independent of environmental suitability. We then used the

mean predicted probability of occurrence at the regional scale based
on this geographic interpolation (Geomean) as a pairwise measure of
species co-occurrence estimated from geographic proximity alone. A
low Geomean corresponds to a pair of species that are likely to be
found in different geographical regions, while a high value corre-
sponds to species found in the same geographic region, independent
of their environmental preference.

For the interpolation, we used Gaussian kernel density smoothers
to calculate the density of occurrence for each site based on the geo-
graphic location of sites (Belmaker et al. 2015). We controlled for
variation in sampling effort by dividing observed occurrence density
by the density of sampling sites (Broennimann et al. 2012). This
ensures that sparsely sampled areas do not receive exceptionally low
densities. For each species, we randomly selected 80% of the sites to
serve as training data, while the remaining 20% of the sites served as
test data. We applied a kernel density smoother to the training data
and generated predictions for the test data. We repeated this process
100 times and the mean predicted value for each site was used as
interpolated occurrence probability for each species, based on geo-
graphic proximity to its other known occurrences.

MODELL ING THE EFFECT OF HABITAT SUITABIL ITY ON

CO-OCCURRENCE PATTERNS OF VIRTUAL SPECIES

To generalize our analysis beyond specific taxa and regional contexts,
we used a meta-community model, based on the one presented in
(Bar-Massada 2015a), to evaluate whether habitat suitability affects
species co-occurrence patterns. This static and spatially implicit model
reflects the process of habitat filtering and competition for space by
different species in multiple sites (local communities) characterized
by varying environmental conditions, denoted by a single environ-
mental axis E bounded between 0 and 100. Species’ site preference is
denoted by a Gaussian niche along E, with an optimum l (randomly
assigned to each species) and a width r. Initially, we used r = 20 to
enable species to establish across the entire range of E (albeit with
varying levels of habitat suitability). Each local community hosts
J individuals, and its environment is denoted by a single value within
E, which is derived at random from a normal distribution with a mean
of 50 and a standard deviation of 20. The abundance of different spe-
cies in a given local community is determined by drawing J individu-
als from a multinomial distribution, with each species having a
probability Ri to be drawn. Ri is denoted by:

Ri ¼ PiPs
i¼1 Pi

� �
eqn 1

where Pi is the suitability of site conditions for species i, obtained
from the Gaussian relationship between its niche optimum l, niche
breadth r, and the environmental conditions E in the site hosting the
local community (Bar-Massada, Kent & Carmel 2014):

PðEÞ ¼ exp �ðl� EÞ2
2r2

" #
eqn 2

We used the model to generate 1000 meta-communities, each one
comprising between 30 and 70 local communities. To analyse co-
occurrence patterns, we calculated the C-score for a single pair of
species selected at random from each meta-community. We generated
1000 null models similarly to the empirical analysis, and then calcu-
lated the SES for the C-score for the selected pair of species for a sin-
gle meta-community. We repeated the entire analysis with one
additional level of niche breadth (r; 10) and two additional levels of
local community sizes (J; 10 and 30) to assess whether our results
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were robust to model parameters. As in the empirical analyses, we
also quantified several potential confounding factors. Thus, for each
species pair in every meta-community, we calculated a pairwise mea-
sure of environmental heterogeneity based on the range of E values
in local communities that hosted at least one species from the corre-
sponding pair (i.e., species A, species B or both). For each species
pair, we also calculated the degree of fundamental niche overlap
using the Bray–Curtis similarity metric between their corresponding
vectors of habitat suitability across E, analogous to the method we
used in the empirical analysis. Finally, for each species pair in every
meta-community, we calculated the mean of pairwise habitat suitabil-
ity (akin to Habmean in the empirical analysis) by averaging their vec-
tors of habitat suitability P across all local communities.

STATIST ICAL ANALYSIS

We analysed the relationship between environmental suitability and
species co-occurrence patterns for each species pair separately as well
as for all pairs combined. At the species pair level, we used linear mod-
els with the SES of C-score as the dependent variable and Habmean,
Geomean, and environmental heterogeneity as independent variables.
Niche overlap (D) was not included in this analyses as it does not vary
within a species pair, but may explain patterns among species pairs (see
below). We restricted this analysis to species pairs that had 10 or more
observations (i.e., 10 regions). In each model, we tested if the effect size
of Habmean was significant (P < 0�05), and if it was positive or nega-
tive. We then calculated the number of species pairs that had signifi-
cantly positive or negative effects of Habmean on SES C-score and used
a chi-square goodness-of-fit test to evaluate whether these deviated
from the null expectation of equal numbers in both groups. As an addi-
tional test for the robustness of the effect size of Habmean on SES C-
score, we calculated the confidence interval around its mean value
across all species pairs (regardless of model significance), and checked
if it did not encompass zero.

On top of the pair-level analysis, we also analysed all species pairs
together. We used linear mixed-effect models to quantify the effects
of Habmean on tree species co-occurrence patterns, while accounting
for additional confounding variables that might affect the relationship.
Additional fixed effects were niche overlap (D), environmental hetero-
geneity and Geomean. The model also included two independent ran-
dom intercepts, region and species pair. Given the multitude of fixed
effects, we undertook a model selection approach based on exhaustive
search, using AIC as the selection criterion. We analysed the results
twice, first using all species pairs, and then only for pairs exhibiting
high levels of niche overlap. We defined high niche overlap as D val-
ues higher than the 90th percentile of the distribution of niche overlap
(across all pairs), which corresponded to D values larger than 0�748.
We fit all models using maximum likelihood, and assessed the signifi-
cance of fixed effects using type II Wald’s chi-square tests. We con-
ducted the statistical analysis using the R packages ‘car’ (Fox &
Weisberg 2011) and ‘lme4’ (Bates et al. 2015).

We repeated the analyses described above for the meta-community
model data using linear models (as we had a single species pair per
meta-community, there was no need for mixed-effect modelling). We
developed linear models in which SES was the dependent variable, and
mean habitat suitability, niche overlap, and environmental heterogeneity
the independent variables. Using the same logic as in our empirical
analysis, we developed two models, one with all levels of niche overlap,
and another for overlap levels higher than 0�9 (which in the modelled
data corresponded to the 90th percentile of niche overlap levels).

On top of these general linear models, we conducted an additional
analysis in an attempt to gain better insight into the mechanism that

drives co-occurrence. We categorized each species pair in each mod-
elled meta-community as close to their environmental range centre (top
25% of Habmean; hereafter ‘range centre species’), close to their envi-
ronmental range margin (bottom 25% of Habmean; hereafter ‘range-mar-
gin species’), or other. For the range-centre and range-margin pairs in
each meta-community, we then categorized each site as either an aggre-
gated community (where both species occurred) or a segregated com-
munity (where only one species was present). For each group, we
calculated mean pairwise habitat suitability which denotes habitat suit-
ability in aggregated or segregated communities separately (in contrast
to Habmean, which is a meta-community scale measure). We also calcu-
lated the mean abundance of species outside the focal pair (non-focal
abundance) which quantifies the magnitude of space limitation in each
community (as the number of sites available for establishment for the
focal pair depends on the abundance of all other species). Unfortu-
nately, we did not have abundance data for the FIA plots so we could
not repeat this analysis in the empirical component of our study.

Results

ANALYSES OF TREE SPECIES ACROSS THE

CONTERMINOUS US

Species pairs whose co-occurrence patterns were significantly
affected by joint habitat suitability had significantly more pos-
itive than negative relationships between the standardized
checkerboard score (SES C-score) and joint habitat suitability
(Habmean), even after accounting for the confounding effects
of environmental heterogeneity and geographic proximity
(Geomean). Of the 495 species pairs that occurred in at least
10 regions, 39 (7�8%) exhibited a significant effect of
Habmean on SES C-score. Of these, 31 effects were positive
and 8 effects were negative (Fig. 2, v2(1) = 13�56, P < 0�001
for a chi-square test comparing the number of observed nega-
tive and positive pairs to expectations based on equal num-
bers in both groups). This number increased to 39 positive
and 6 negative effects when Habmean was used as a single
predictor (v2(1) = 24�2, P < 0�001). Furthermore, the mean
effect size of Habmean on SES C-score for all species pairs
that appeared in 10 regions or more (regardless of model sig-
nificance) was 2�12, and the confidence interval ([1�46, 2�79])
did not encompass zero, implying a robust positive value of
the mean effect size. Together, these results imply that
increased levels of joint habitat suitability lead to more segre-
gated co-occurrence patterns at the species pair level.
In the analysis of all species pairs combined, and when

species pairs with all levels of niche overlap were considered,
our model selection approach revealed that a model consisting
of all fixed effects was best supported (Table S1, Supporting
Information). In this model, joint habitat suitability (Habmean)
had a significant positive effect on the SES of C-score
(b = 1�33 (SE 0�12), v2(1) = 109�93, P < 0�001), implying
that species are less aggregated and more segregated when
facing more favourable environmental conditions. As
expected, niche overlap (D) had a significant negative effect
on SES (b = �2�09 (SE 0�09), v2(1) = 532�72, P < 0�001),
and environmental heterogeneity had a significant positive
effect on SES (b = 0�02 (SE 0�004), v2(1) = 27�71,
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P < 0�001). Range cohesion (Geomean) did not have a signifi-
cant effect (v2(1) = 0�34, P = 0�55).
In the analysis restricted to species pairs with high niche

overlap, the best model contained only two fixed effects, joint

habitat suitability (Habmean) and range cohesion (Geomean).
Joint habitat suitability had a significant positive effect on the
SES of C-score (b = 1�59 (SE 0�42), v2(1) = 14�14,
P < 0�001), while range cohesion did not have a significant
effect (v2(1) = 2�05, P = 0�15). These two fixed effects, how-
ever, were moderately correlated (Spearman’s r = �0�79).
Just as in the models which contained all species pairs regard-
less of niche overlap, this analysis shows that higher habitat
suitability leads to less aggregated and more segregated co-
occurrence patterns.
To demonstrate that the effect of joint habitat suitability on

co-occurrence patterns is not an artefact of averaging the indi-
vidual suitability levels of both species, we plotted SES as a
function of species’ separate suitability levels (Fig. 3a). This
figure reveals that indeed, suitability has a positive effect on
SES for each species separately, but SES increases to its
highest values (i.e., species are most segregated) when both
species have high environmental suitability levels.
We found qualitatively similar results when we analysed

the relationship between co-occurrence and joint habitat suit-
ability using JSDM instead of the standard C-score and null
model approach. Species occurrences tended to exhibit posi-
tive residual correlation, or Rho, closer to the range margin,
and negative residual correlation closer to their range centre.
As JSDMs inherently account for shared environmental
responses between species (analogous to our measure of niche
overlap), these analyses provide an independent confirmation
to our main findings. The full results of the JSDM analysis
are detailed in part B of the supplementary materials.

META-COMMUNITY MODEL RESULTS

Our meta-community models generated relationships between
species co-occurrence patterns and mean habitat suitability that
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Fig. 2. Pairwise relationships between mean pairwise habitat suitabil-
ity (Habmean) and the standardized effect size (SES) of C-score (large
negative values correspond with aggregated co-occurrence pattern and
large positive values denote segregated co-occurrence patterns). Each
solid line depicts the relationship for a single species pair that had a
significant effect of Habmean on SES in a linear model containing
SES as the dependent variable, and Habmean, Geomean and environ-
mental heterogeneity as the independent variables. To predict the
effect of Habmean on SES C-score, we set Geomean and environmental
heterogeneity to their mean values across their observations for each
species pair. Black lines highlight pairs that had significantly positive
slope coefficients, and grey lines highlight pairs that had significantly
negative slope coefficients.

Fig. 3. Relationships between the standardized effect size (SES) of C-score and habitat suitability for species pairs with high levels of niche overlap
(D ≥ 0�748 in the empirical data, panel a; D ≥ 0�9 in the meta-community model data, panel b). Each circle denotes a separate species pair in a
given region (or meta-community in the modelled data). The suitability of each species in a given pair is represented by a separate axis. The black
gridded surface, added for illustration purposes, depicts a linear model fit to the relationship between the SES and both habitat suitability levels.
[Colour figure can be viewed at wileyonlinelibrary.com]
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were remarkably similar to those we found in the empirical
analysis. Habmean had a consistent positive effect on SES of C-
score regardless of the level of niche overlap between species,
and the direction of this effect was robust to changes in commu-
nity size (J) and niche width (see Table S2). Furthermore, when
we restricted our analysis to species pairs with very high levels
of niche overlap (D ≥ 0�9), Habmean was the only significant
predictor of SES (Table S2). This result is also consistent with
the empirical result. When we plotted SES as a function of spe-
cies’ separate suitability levels, the resulting patterns (Fig. 3b)
were very similar to what we had found in the empirical analy-
sis of forest communities (Fig. 3a).
When we analysed the results separately for range-centre

and range-margin species pairs, in aggregated vs. segregated
communities, we found contrasting results that might point
to a statistical explanation to the relationship between
co-occurrence and habitat suitability. Both range-centre and
range-margin species (Fig. 4c and d, respectively) tended to
be segregated when there was less space available to them (as
non-focal species abundance in segregated communities was
higher than in aggregated communities). In addition, range-
centre species pairs had similar levels of habitat suitability in
both segregated and aggregated communities (Fig. 4a). In
contrast, range-margin species pairs had higher levels of habi-
tat suitability in aggregated communities compared to segre-
gated communities (Fig. 4b).

Discussion

We found strong and predictable non-stationarity in co-occur-
rences between species pairs, with patterns shifting from more

segregation at the environmental range centre to more aggre-
gation at range margins. In a separate analysis using JSDMs,
we found qualitatively similar results, in which species occur-
rences were positively correlated at their range margin, and
negatively correlated at their range centres. The agreement
between the results of our model simulations and two meth-
ods of empirical data analyses suggests this is a general pat-
tern that is independent of the particular taxa studied or the
particularities of the simulations.
The strong and predictable non-stationarity of pairwise

species co-occurrence patterns suggests that estimating fixed
spatial or temporal associations between species from co-occur-
rence data may lead to inaccurate conclusions about their
underlying spatial association if data were collected along an
environmental gradient. For example, observations in the range
centre may prove that two species are strongly segregated and
hence presumably fierce competitors. However, by simply
studying co-occurrence at another region in which habitat suit-
ability for these species is lower, we may expect the pattern to
change substantially towards more aggregated patterns. JSDMs
and similar joint statistical models incorporate associations esti-
mated from co-occurrences to improve species distribution
modelling (Ovaskainen, Hottola & Siitonen 2010; Kissling
et al. 2012; Pollock et al. 2014; Warton et al. 2015). Thus, pat-
terns of co-occurrence are used to predict the current or future
distributions of species taking into account both environment
and presumed pairwise interspecific associations. In the light of
our results, it is possible that these models may lead to inaccu-
rate conclusions, as co-occurrence patterns can be confounded
by habitat suitability, and hence such models will not lead to
improved distributional predictions.
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Fig. 4. Mean pairwise habitat suitability (top
row) and non-focal abundance (bottom row)
for species in modelled communities (niche
overlap D ≥ 0�9), in which they exhibit
different co-occurrence patterns (aggregated:
both species occurring; segregated: one of the
two species occurring). Panels (a, c) depict
species pairs at their environmental range
centre (Habmean in the top 25%), whereas
panels (b, d) depict species pairs at their
environmental range margin (Habmean in the
bottom 25%).
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This study is unique as it explicitly examined several con-
founding factors that are often ignored (Bar-Massada 2015b),
but may substantially bias the results of co-occurrence analy-
ses. For example, species co-occurrence analyses typically
conflate species interactions with environmental filtering,
making separating the two difficult. Thus, the patterns
observed could be formed by species interactions being
weaker or by the range of environmental conditions occupied
being larger at environmental range margins. By explicitly
accounting for habitat heterogeneity, we were able to show
that habitat suitability remains a prime predictor of the SES
of C-score even after accounting for variation in environmen-
tal heterogeneity. In addition, geography is often mistaken for
ecology (Bahn & McGill 2007; Warren et al. 2014). Indeed,
we find that difference in the geographical range of species
(Geomean) influences co-occurrence patterns. However, this
pattern was relatively weak and the influence of environmen-
tal affinities (Habmean) remained strong even when geographi-
cal range overlap was accounted for.
If the very strong variation in the strength, and even the

sign, of species co-occurrence patterns indeed bears the signal
of biotic interactions, this would suggest that species compete
more strongly at their environmental range centre than at their
range margins. However, our simulation models did not
explicitly introduce interspecific interactions. Why then did
we observe patterns of segregation in environmental range
centres that are in accordance with interspecific competition?
We suggest that the mechanism producing this pattern is
zero-sum competition for space. Given that the space avail-
able for growth is limited, both in the model and in real tree
communities, an individual of a particular species being estab-
lished will retard the establishment of individuals from other
species. But why then does the pairwise strength of competi-
tion for space shift between environmental range centres and
margins? We propose that at the range-centre species tend to
be highly abundant, as well as being better suited to the local
environment. In these cases, high abundance of a given spe-
cies at any particular site will, by statistical necessity of the
zero-sum condition, lead to low abundances of the other spe-
cies within the pair. This will increase the prevalence of local
extinctions, which will be manifested by more segregated co-
occurrence patterns (Fig. 4c).
As species will be less abundant at their environmental

range margins, the amount of area that is available for growth
will depend less on the abundance of the other focal species
and more on the abundance of the non-focal species. This is
because at the environmental range margins, the non-focal
species are more suitable and hence common in the meta-
community. Hence, less suitable species will be forced to
cling to the limited number of sites where their suitability is
relatively high. Indeed, our analyses show that unsuitable spe-
cies pairs tend to aggregate in sites that are much more suit-
able for them compared to the entire meta-community
(Fig. 4b). In these sites, the relative abundances of superior
species are low (Fig. 4d), and hence there is more room for
both focal species, resulting in an aggregated pattern. As this
process depends only on a constraint on total abundance

along with species-specific gradients of habitat suitability, we
suggest it may be a very general ecological pattern.
In the current debate about the utility of pairwise vs. com-

munity-wise approaches for understanding species interactions
(Veech 2014; Sober�on 2015; Arita 2016), our results suggest
that pairwise co-occurrence patterns are tightly linked to com-
munity scale patterns. Pairwise analyses, therefore, should
incorporate information about the abundance distribution of
the entire community when these data are available. Under-
standing how to couple the pairwise and community-wise
approaches for species co-occurrence analysis, in order to
more accurately estimate biotic interactions, should become a
critical focus of future research.
Our results suggest that studies on biotic interactions within

communities should not focus solely on pairwise species co-
occurrences, but in addition explicitly account for the distribu-
tion of habitat suitability and relative abundance within the
community as a whole. As community ecologists are begin-
ning to embrace joint models (models that simultaneously
account for correlations among species and their environmen-
tal responses; Warton et al. 2015), we highlight the need to
better understand how correlations among species change
along environmental gradients. Accounting for this effect
might greatly improve our ability to model and predict
changes in ecological communities under environmental
change.
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Appendix S1. Additional results and analysis of species co-occur-
rence using Joint Species Distribution Models (JSDM).
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